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Abstract

This project explores deep learning techniques for multi-
class classification of EEG signals for motor imagery
tasks. Various neural network architectures such as CNNS,
LSTMs, RNNs, VAEs, Transformers, and attention are im-
plemented and tuned. Effects of pre-processing and time
duration on accuracy are analyzed. Results from training
on every subject and the entire dataset are compared. The
project shows the potential of deep learning techniques for
EEG signal analysis and classification, highlighting the ac-
curacy of the models and their ability to learn underlying
patterns in EEG data.

Please note that the accuracies that we got for CNN and
CNN+LSTM are different due to architectural changes made by
us, and the same is represented using asterisk.

1. Introduction

In this project, we explore the use of neural networks to
classify electroencephalography (EEG) data for motor im-
agery tasks[2] [1]. We begin by visualizing the data and
performing preprocessing to obtain more meaningful data.
Then, we train and compare multiple neural network archi-
tectures to predict the imagery task performed by each sub-
ject. The details of the project are discussed in the following
sections.

1.1. Preprocessing

Pre-processing of the EEG dataset for motor imagery
classification included trimming the data to the first 500
time steps and applying various techniques for data aug-
mentation such as max pooling, average pooling with Gaus-
sian noise, and subsampling with Gaussian noise. Concate-
nating the outputs of these techniques over the sample axis
provided a diverse dataset, improving the accuracy of the
deep-learning models. These pre-processing steps prepared
a robust dataset for the models to learn the underlying pat-
terns in the EEG data.

Kimaya Kulkarni
UID: 805528337

Sreya Banerjee
UID: 005429893

1.2. Architectures
1.2.1 Convolutional Neural Network(CNN¥)

A CNN model was developed using Keras Sequential class
to classify EEG data based on imagery tasks. The model
included four convolutional blocks with increasing filters,
followed by a MaxPooling2D layer, a BatchNormalization
layer, and a Dropout layer. The highest accuracy achieved
was 72.12%, with a relu activation function, a learning rate
of le-5, 150 epochs, and a batch size of 64. Modifications,
such as adding an extra convolution block, softmax layer
and changing the activation function, did not significantly
improve the accuracy. These results suggest that the pro-
posed CNN architecture can effectively classify EEG data
based on imagery tasks.

1.2.2 Recurrent Neural Network (CNN + LSTM*)

The model utilized a combination of Convolutional Neu-
ral Network (CNN) and Long Short-Term Memory (LSTM)
layers to extract significant features and model temporal de-
pendencies, achieving an accuracy of 72.23% on the test
set. The LSTM layers processed the output of the CNN
layers, which was a sequence of feature maps, to produce
the final output. The LSTM layer was regularized using
dropout to prevent overfitting. Increasing the number of fil-
ters caused a decline in performance, which suggests that
increasing filter size may result in overfitting and higher
memory consumption. Additionally, incorporating multi-
ple LSTM layers with more units did not improve perfor-
mance, but it did increase memory usage. The architecture
was implemented by removing the fully connected network
and instead utilizing multiple LSTM layers to capture the
temporal dependencies in the Electroencephalogram (EEG)
signals and reduced computation time.

1.2.3 Recurrent Neural Network (CNN + GRU)

In this experiment, a CNN+GRU combination was used,
as RNNs had shown good performance in previous experi-
ments. We chose GRU as GRU uses less training parame-
ters and therefore uses less memory and executes faster than



LSTM. It also prevents the vanishing gradient problem. In
the architecture, CNN layers learned spatial features, while
GRU layers captured temporal patterns in sequential data.
The model utilized multiple GRU layers following the CNN
architecture. The highest accuracy of 74.09 % was obtained
with ReLU activation and multilayer GRU using CNN fil-
ters. Increasing filter or GRU units did not improve accu-
racy, while smaller learning rates achieved comparable ac-
curacy. Higher number of filters or GRU units can lead to
overfitting and higher memory usage.

1.24 VAE

Variational autoencoders (VAEs) consist of an encoder and
decoder network, used for unsupervised learning, but the
output of the encoder can be given to a classifier for clas-
sification tasks. VAEs can learn the underlying distribu-
tion of input data and improve accuracy for classification
tasks. The encoder network can learn an informative rep-
resentation of the input data, which is then used for clas-
sification. The architecture of combining a CNN with a
VAE achieved accuracies ranging from 45% to 68.34% de-
pending on the number of epochs, batch size, and learning
rate. The addition of a GRU or LSTM network in combi-
nation with the CNN and VAE significantly improved per-
formance. The VAE with CNN+GRU achieved an accuracy
of 71.04% and the VAE with CNN+LSTM achieved an ac-
curacy of 73.36%. Overall, these results suggest that the
combination of CNN and VAE may have potential for cer-
tain classification tasks, and the choice of classifier network
can also affect performance.

1.2.5 CNN + Attention or CNNA

The CNN model utilizes convolutional blocks, batch nor-
malization, dropout, and self-attention[3] to extract features
from the input data. The transformer layer applies self-
attention to the feature maps, and a dense layer with a soft-
max activation function produces the classification output.
We experimented with different hyperparameters, including
attention, activation function, number of epochs, batch size,
learning rate, and dropout rate. The elu activation func-
tion with attention and a learning rate of le-3 performed
the best, and the dropout rate was more effective at 0.6. We
also tested different optimizers such as RMSProp and Ada-
grad. The highest accuracy achieved was 72.68%. We cre-
ated another CNN model with attention and squeeze-and-
excitation (SE) blocks to improve the representation of in-
put data. The SE blocks recalibrate the feature maps based
on channel-wise information by reducing the dimensions of
the feature maps and scaling them based on channel impor-
tance. However, this model showed lower accuracy com-
pared to the model with only attention. Overall, the results
suggest that the proposed CNN architecture with attention
and optimized hyperparameters can effectively classify the
input data.

2. Results
2.1. Classification for single subject

In part a, the classifier was trained using only the data
from subject 1, and then tested on subject 1’s data, similarly
trained using only data from subject 2 and then tested on
subject 2’s data, and so on. The results can be found in
Table 1, which shows the classification accuracy for three
different models.

In part b, the classifier was trained using data from all
subjects and then tested on subject 1’s data. We did this
experiment for all subjects to see if we could observe any
pattern. The results can be found in Table 2, which shows
the classification accuracy for all models.

Comparing the results in Table 1 and Table 2, we can
see that in general, training across all subjects leads to
better classification accuracy on subject 1’s data. How-
ever, the extent of the improvement varies depending on
the model. For example, the CNN model sees a relatively
small improvement from training across all subjects, while
the CNN+GRU model sees a larger improvement.

Another interesting trend to note is that the performance
of the models generally varies significantly across different
subjects. For example, in Table 1, the CNN model performs
well on Subject 4, achieving an accuracy of 0.723, while its
performance on Subject 1 is much lower, with an accuracy
of only 0.375. Similarly, the CNN with LSTM model per-
forms well on Subject 6, achieving an accuracy of 0.759,
but its performance on Subject 1 is only 0.384.

This indicates that the EEG data collected from differ-
ent subjects may have different characteristics and require
different modeling approaches to achieve optimal classifi-
cation performance. Therefore, it may be necessary to per-
form subject-specific modeling and optimization to achieve
the best results. This may also be indicative of possible
presence of noise in some data.

2.2. Classification across all subjects

Looking at the Table 3, we can see that the CNN + GRU
model has the highest accuracy among all the models with
a value of 0.7409. This indicates that the addition of the
GRU layer has helped improve the accuracy of the model.
On the other hand, the VAE (CNN) model has the lowest
accuracy, which suggests that the VAE technique might not
be suitable for this particular classification problem.

Another interesting trend to notice is that models that in-
corporate LSTM or GRU layers perform better than the ba-
sic CNN model. This is expected since LSTM and GRU are
designed to work well with sequence data, and this dataset
consists of time-series EEG signals. Additionally, the CNN
+ Attention model has a similar accuracy as the basic CNN
model, which might suggest that adding an attention mech-
anism doesn’t necessarily improve the performance of the



model in this case.

Overall, the trends suggest that incorporating recurrent
layers such as LSTM and GRU can improve classification
accuracy, while the VAE technique might not be suitable for
this problem.

2.3. Classification accuracy as a function of time

The Table 4 presents the classification accuracy of three
models - CNN, CNN+LSTM, and CNN+GRU - trained on
EEG data over time. The classification accuracy of all mod-
els improves over time, but with fluctuations across time
intervals. The CNN+GRU model consistently outperforms
the other two models, indicating that the GRU’s ability to
capture long-term dependencies in sequences may be par-
ticularly relevant for EEG data.

The required training time to achieve a reasonable clas-
sification accuracy depends on the specific application’s re-
quirements. For instance, the CNN+GRU model achieves
an accuracy of 0.692 at 500 time units, which may suf-
fice for some applications. However, higher accuracy re-
quirements may necessitate longer training times or more
advanced models.

The insights gained from the table align with our ex-
pectations, as the model’s generalization improves with in-
creasing training data. Moreover, the CNN+GRU model’s
superiority can be attributed to its ability to capture longer-
term dependencies in EEG sequences.

3. Discussion

The results section shows that CNN+GRU had the high-
est accuracy in most experiments. The best-performing
model was chosen based on validation accuracies. The
model weights of the epoch just before the validation ac-
curacy started increasing(after decreasing), indicating over-
fitting, were selected assuming training accuracy was de-
creasing(i.e. model is learning).

We will discuss our results and the reasoning behind it in
this section. These are the contributions made by our work.
Contribution 1: Achieved 74.09% classification accuracy
for the action-based task on the entire subject population.
Contribution 2: We identify which subjects have the nois-
iest data and therefore are most challenging to classify for
the action-based task.

Contribution 3: We showed the importance of hyperpa-
rameter tuning and choosing correct model weights by us-
ing validation accuracy data to achieve optimum accuracy.

Performance on all subjects : CNN+GRU has the high-
est accuracy of 0.7409, followed by CNN+LSTM* with
0.722. RNN architectures, including LSTM and GRU,
excel at processing sequential data due to their ability to
capture temporal dependencies and retain information over
time. These factors contribute to RNNs’ superior perfor-
mance in EEG classification. VAE is a generative model

that learns the distribution of data and generates new data by
sampling from this learned distribution. VAEs work well on
low noise levels and clear structured data, but struggle with
noisy data. VAEs may not be suitable for EEG classification
due to the noisy nature of EEG data. Attention mechanism
assigns weights to different parts of the input data for mod-
els to focus on relevant information. In EEG classification,
relevant information may be scattered across the signal, so
attention may not improve performance compared to mod-
els that process the entire signal.

Subject-wise performance: The accuracies for EEG
classification vary greatly across subjects, indicating vary-
ing levels of noise in signals. Architecture performance
trends differ across subjects, suggesting that optimal archi-
tecture varies depending on signal characteristics. We also
trained models on all subjects and tested them on subject-
wise data. These accuracies were better than the ones
observed in the previous experiment, maybe because the
model could generalize well for different data. It can also
be seen that accuracy values vary a lot and this may be due
to noise present in the data itself.

Performance based on time: The CNN+GRU model
outperforms the CNN* and CNN+LSTM* models in later
stages in terms of time, indicating the effectiveness of GRU
in handling temporal information. GRU has a gating mech-
anism that can better model temporal dependencies in EEG
signals, leading to better accuracy with fewer parameters
and reduced risk of overfitting.

To avoid overfitting of data we observed validation accu-
racy decrease and increase, and chose the model just before
an increase in val accuracy. We also tuned the learning rate,
activation function, optimization technique, and other hy-
perparameters to ensure maximum test accuracy value.
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Subject | CNN* | CNN with LSTM* | CNN+GRU
0 0.439 0.449 0.474
1 0.375 0.384 0.264
2 0.540 0.519 0.425
3 0.479 0.405 0.389
4 0.723 0.409 0.473
5 0.367 0.428 0.459
6 0.625 0.759 0.535
7 0.605 0.435 0.395
8 0.670 0.515 0.569

Table 1: Training and testing subject-wise data

Subject Model
CNN* CNNA CNNA CNN with | CNN  + | CNN VAE + | VAE with | VAE with
with relu with elu relu LSTM* GRU CNN CNN+GRU| CNN+LSTN
0 0.62 0.439 0.64 0.62 0.600 0.639 0.560 0.639 0.560
1 0.579 0.479 0.64 0.62 0.460 0.600 0.540 0.479 0.579
2 0.82 0.72 0.82 0.759 0.779 0.800 0.740 0.759 0.720
3 0.699 0.759 0.66 0.62 0.680 0.680 0.600 0.759 0.660
4 0.787 0.723 0.787 0.702 0.787 0.787 0.680 0.787 0.765
5 0.673 0.714 0.775 0.693 0.673 0.673 0.632 0.653 0.734
6 0.759 0.74 0.759 0.74 0.720 0.759 0.639 0.740 0.720
7 0.74 0.759 0.759 0.639 0.699 0.699 0.680 0.720 0.720
8 0.723 0.787 0.765 0.787 0.723 0.787 0.787 0.765 0.829

Table 2: Accuracy values for different models on each subject

Model Accuracy
CNN* 0.710
CNN + LSTM* 0.722
CNN + GRU 0.7409
CNN + Attention 0.729
VAE(CNN + LSTM) 0.733
VAE (CNN + GRU) 0.7104
VAE (CNN) 0.683

Table 3: Classification accuracy across all subjects

Time | CNN* | CNN + LSTM* | CNN + GRU
100 | 0.543 0.494 0.514
200 | 0.636 0.557 0.593
300 | 0.692 0.664 0.686
400 | 0.721 0.655 0.686
500 | 0.686 0.675 0.692
600 | 0.689 0.683 0.681
700 | 0.679 0.678 0.703
800 | 0.677 0.664 0.683
900 | 0.682 0.709 0.694
1000 | 0.664 0.665 0.687

Table 4: Classification accuracy as a function of time



